G Polynés	uadcloupe - Guyane - Martinique sie Française - Saint Pierre et Miqueion Session 2010		
SUJET	Examen: BEP Spécialité: Scoteur 3 Métiers de l'électricité Marie	Coeff:	selon spécialité
	Métiers de l'électricité –Electronique – Audiovisuel -Industries graphiques Épreuve : Mathématiques - Sciences Physiques	Durće : Page :	2 h

Examen: BEP

Session 2010

Épreuve : Mathématiques-Sciences Physiques

durée : 2 heures

Secteur 3 : Métiers de l'Électricité - Électronique - Audiovisuel - Industries graphiques

Sont concernées les specialités suivantes :

- Installateur conseil en équipement électroménager
- Maintenance des équipements de commande des systèmes industriels
- Métiers de l'électrotechnique
- Métiers de la communication et des industries graphiques
- Optique-lunetterie
- Systèmes électroniques industriels et domestiques

BEP Secteur 3 Mathématiques - Sciences Physiques

Session		
2010	Page:	2/11

Ce document comporte 11 pages numérotées de 1/11 à 11/11. Le formulaire est en dernière page. La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

Les candidats répondent sur une copie à part et joignent toutes les annexes.

L'usage de la calculatrice est autorisé.

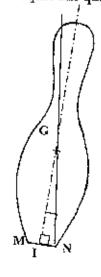
Mathématiques (10 points)

Le bowling est un jeu qui consiste à renverser 10 quilles avec une boule,

Exercice 1 (4 points)

Les quilles sont placées au bout de la piste dans un triangle équilatéral de 91,6 cm de côté.

- 1.1. Donner deux propriétés d'un triangle équilatéral.
- 1.2. Calculer, en cm, la longueur HC.
- 1.3. Calculer, en cm, la hauteur BH. Arrondir le résultat au dixième.
- 1.4. Calculer, en cm2, l'aire du triangle ABC. Atrondir le résultat à l'unité.



- 1.5. Dans un livre de sciences physiques, on peut lire la propriété suivante : « un solide est en équilibre tant que la verticale passant par son centre de gravité G coupe sa base ».
 - 1.5.1. Dans le tableau de l'annexe 1 page 7/11, indiquer si chacune des quilles est en équilibre ou non. Laisser apparents les traits de construction qui justifient la réponse.
 - 1.5.2. En déduire un encadrement de l'angle d'inclinaison à partir duquel une quille va tomber.
- 1.6. On se propose maintenant de calculer l'angle limite d'inclinaison à partir duquel une quille tombe.

Le schéma ci-dessous représente une quille sur le point de tomber. Le point I est le milieu de [MN].

- 1.6.1. Calculer, en degré, la mesure de l'angle ÎGN. Arrondir la valeur à l'unité.
- 1.6.2. Comparer ce résultat avec celui de la question 1.5.2.

Données: MN = 5.7 cmGI = 18,2 cm

		 -		
Épreuve :	BEP Secteur 3	Session		
Epicuve;	Mathématiques - Sciences Physiques	2019	Page :	3/11

Exercice 2 (3,5 points)

En fonction du mouvement initial donnée à la boule, celle-ci peut adopter une trajectoire rectiligne ou une trajectoire courbe. La boule est lancée deux fois. Pour chaque lancer, la trajectoire de la boule est modélisée par une fonction.

- 2.1. Sur le repère de l'annexe 2 page 8/11 est représentée la trajectoire de la boule au cours du premier lancer.
 - 2.1.1. Indiquer la nature de la fonction associée à cette représentation graphique. Justifier la réponse,
 - 2.1.2. Afin de déterminer le coefficient directeur de cette droite, on doit résoudre le système d'équations suivant : $\begin{cases} 6a+b=4\\ 15a+b=13 \end{cases}$
 - 2.1.3. En déduire l'équation y = ax + b de la droite (AB) passant par les points A(6; 4) et B(15; 13).
- 2.2. La trajectoire de la boule au cours du second lancer est modélisée par la représentation graphique de la fonction f définie sur l'intervalle [0; 20] par $f(x) = 4 0.05x^2$.
 - 2.2.1. Compléter le tableau de valeurs de l'annexe 2. Arrondir les valeurs à l'unité.
 - 2.2.2. Tracer la représentation graphique de la fonction f sur le repère de l'annexe 2.
 - 2.2.3. En déduire graphiquement les coordonnées de la quille renversée lors du second lancer de la boule. Laisser apparents les traits utiles à la lecture.

Exercice 3 (2,5 points)

Le diagramme de l'annexe 1 page 7/11 représente la fréquentation du bowling au cours des 3 premiers mois de l'année.

- 3.1. A l'aide de l'histogramme, compléter le tableau de l'annexe 1.
- 3.2. Compléter le diagramme de l'annexe 1 pour les mois d'avril et mai.
- 3.3. Calculer la fréquentation moyenne par mois.

ATTENTION!

Sciences Physiques (10 points)

Les candidats traiteront <u>OBLIGATOIREMENT</u> les exercices 4 et 5, et <u>UN SEUL</u> exercice à choisir parmi les exercices 6, 7 et 8.

Exercice 4, obligatoire (4,5 points)

Chaque boule de bowling porte un numéro compris entre 6 et 16, nombre qui correspond à la masse de la boule exprimée en livre anglaise (1 livre anglaise correspond à 454 g).

- 4.1. Calculer, en kg, la masse d'une boule portant le nº 12.
- 4.2. Calculer, en Newton, le poids P de la boule. Arrondir la valeur au dixième. Donnée : g = 10 N/kg.

BEP Secteur 3 Mathématiques - Sciences Physiques

Session	
2010	

Page: 4/11

- 4.3. Un joueur tient la boule en équilibre avec ses deux mains. La boule est alors soumise à trois actions mécaniques :
 - $rac{r}{r}$ Action exercée par la main droite au point A, représentée par la force \vec{F}_{A}
 - Action exercée par la main gauche au point B, représentée par la force \overrightarrow{F}_B .
 - Action de la Terre τερτésentée par P, poids de la boule.

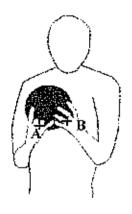
Sur l'annexe 3 page 9/11 :

- 4.3.1. Compléter les trois premières colonnes du tableau de caractéristiques des forces.
- 4.3.2. Tracer la droite d'action de \overrightarrow{P} sur la figure 1.
- 4.3.3. En déduire le tracé de la droite d'action de \vec{F}_B sur la figure 1.
- 4.4. A partir du point O sur l'annexe 3 :
 - 4.4.1. Représenter le poids \vec{P} .
 - 4.4.2. Compléter le dynamique des forces.
- 4.5. A partir du dynamique, déterminer, en Newton, les valeurs des forces \vec{F}_A et \vec{F}_B . Compléter la dernière colonne du tableau de caractéristiques des forces.

Exercice 5, obligatoire (2,5 points)

L'éclairage d'une piste de bowling s'effectue à l'aide de 20 lampes halogènes. Chaque lampe porte les indications suivantes : $230~{\rm V}$ / $50~{\rm W}$.

- 5.1. Calculer, en Ampère, l'intensité du courant qui traverse une lampe. Arrondir la valeur au centième.
- 5.2. Calculer, en Watt, la puissance totale nécessaire pour éclairer une piste de bowling.
- 5.3. Calculer, en kWh, l'énergie électrique consommée pour l'éclairage d'une piste de bowling si celle-ci reste en fonctionnement pendant 5 heures 30 minutes.


Donnée: E = Pt

Exercice 6, au choix (3 points)

Une fois lancée, on admet que la boule tourne sur elle-même sans glissement et qu'elle est animée d'un mouvement rectiligne. Elle parcourt la longueur de la piste en 2,8 s.

- 6.1. Compléter le tableau de l'annexe 4 page 10/11.
- 6.2. Calculer, en m/s, la vitesse moyenne de la boule. Convertir en km/h. Arrondir les valeurs au dixième.
- 6.3. La boule parcourt 68 cm en un tour. Calculer le nombre de tours effectués par la boule sur toute la longueur de la piste. Arrondir la valeur à l'unité.
- 6.4. Calculer, en tr/s, la fréquence de rotation n de la boule.

Donnée : Iongueur de la piste : d = 19,17 m.

BEP Secteur 3 Épreuve : Mathématiques - Sciences Physiques Session 2010 Page : 5/11

Exercice 7, au choix (3 points)

La température à l'intérieur de la salle est régulée à l'aide d'une climatisation réversible dont voici certaines caractéristiques techniques :

Desires A: 100 to to		
Puissance frigorifique (froid)	W	12 500
Puissance calorifique (chaud)	17,	
		14 000
Tension/phase/fréquence	V/nº/ Hz	230 / 1 / 50
Puissance absorbée (froid)		
	kW	3,89
Puissance absorbée (chaud)	kW	r I
		3,77

- 7.1. Nommer, en toute lettre, la grandeur physique et l'unité de chacune des deux valeurs qui figurent en gras dans le tableau.
- 7.2. Indiquer si la climatisation est alimentée par un courant alternatif monophasé ou triphasé. Justifier la réponse à l'aide du tableau.
- 7.3. Calculer, en Joule, l'énergie Q absorbée nécessaire pour diminuer la température de l'air de la salle de 30 °C à 24 °C.
- 7.4. La climatisation a une puissance de 12 500 W.
 - 7.4.1. Calculer, en seconde, la durée nécessaire pour atteindre 24 °C. On prendra $E = 1.47 \times 10^7 \,\text{J}$. Convertir le résultat en minute. Arrondir la valeur à l'unité.
 - 7.4.2. En réalité, il faut environ 30 min, pour atteindre 24 °C. Expliquer cette différence.

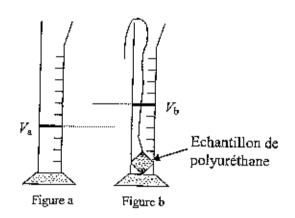
Données : $Q = mc(\theta_{f^-} \theta_i)$ $E = P \times t$

Capacité thermique massique de l'air : c = 1 022 J/(kg.°C)

Masse volumique de l'air : $\rho = 1.198 \text{ kg/m}^3$ Volume d'air de la salle : $V = 2.000 \text{ m}^3$

Exercice 8, au choix (3 points)

Une boule de bowling est recouverte d'une matière plastique synthétique : le polyuréthane dont la densité est 1,2.


Le polyuréthane est fabriqué industriellement à partir d'un composé chimique de formule C₁₅H₁₀N₂O₂.

- 8.1. Nommer les quatre éléments chimiques qui le constituent.
- 8.2. Calculer, en g/mol, la masse molaire moléculaire de ce composé.

Données : M(C) = 12 g/mol; M(H) = 1 g/mol; M(N) = 14 g/mol; M(O) = 16 g/mol.

Ú	BEP Secteur 3	Session		
Epreuve :	Mathématiques - Sciences Physiques	2010	Page:	6/11

8.3. On réalise au laboratoire l'expérience suivante : on plonge un échantillon de polyuréthane dans une éprouvette graduée contenant de l'eau.

$$V_a = 100 \text{ mL}$$
 $V_b = 150 \text{ mL}$
Masse de l'échantillon de polyuréthane $m = 60 \text{ g}$

$$V_{\rm l} = V_{\rm b} - V_{\rm g}$$

- 8.3.1. Calculer, en mL, le volume V_1 .
- 8.3.2. En déduire, en cm 3 , le volume V de l'échantillon de polyuréthane.
- 8.3.3. Calculer, en g/cm^3 , la masse volumique ρ du polyuréthane.

Donnée :
$$\rho = \frac{m}{V}$$

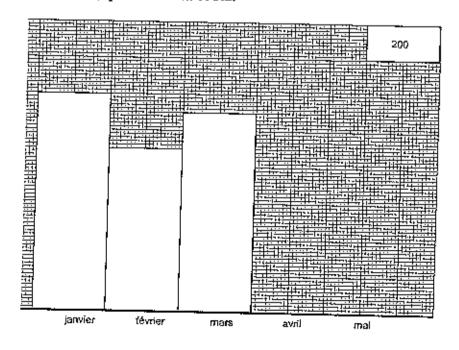
8.3.4. Indiquer si le résultat trouvé est en accord avec les données de l'énoncé.

BEP Secteur 3

Mathématiques - Sciences Physiques

Session
2010

Page:


7/11

Annexe 1 à rendre avec la copie

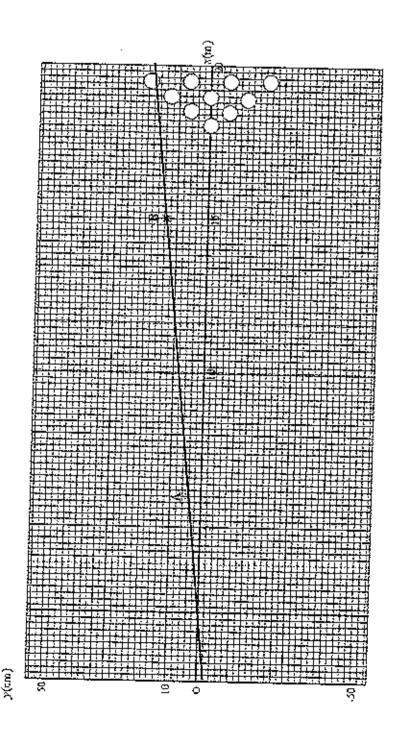
Exercice 1, question 1.5.1.
Pour chaque cas, cocher la bonne réponse.

Inclinaison de 5°	Inclinaison de 10°	Inclinaison de 15°
G +	Tombe	G +
Ne tombe pas	Ne tombe pas	☐ Tombe ☐ Ne tombe pas

Exercice 3, questions 3.1, et 3.2,

Mois	Effectif	Pourcentage
Janvier	1 200	24
Février	j	
Mars		<u> </u>
Avril		16
Mai		
Total	5 000	100

BEP Secteur 3
Épreuve : Mathématiques - Sciences Physiques


Session 2010 Page: 8/11

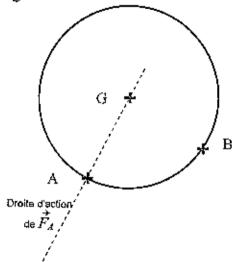
Annexe 2 à rendre avec la copie

Exercice 2, questions 2.2.1, et 2.2.2,

Tableau de valeurs de la fonction f telle que $f(x) = 4 - 0.05x^2$

x	0	2	4	6	8	10	12	14	16	18	20	
<i>f</i> (x)	4	; 		2,2	0,8	-1		-5,8	-8,8	_	-16	

BEP Secteur 3 Mathématiques - Sciences Physiques


Session		,
2010	Page:	9/11

Annexe 3 à rendre avec la copie

Exercice 4, questions 4.3.; 4.4.; 4.5.

Tracé des droites d'action :

Figure 1

Dynamique des forces : 1 cm représente 10 N

O x

verticale

Tableau de caractéristiques des forces \vec{F}_A , \vec{F}_B et \vec{P} :

Action	Force	Point d'application	Droite d'action	Sens	Valeur en Newton
Action exercée par la main droite au point A	\vec{F}_A				
Action exercée par la main gauche au point B	\vec{F}_{B}				
Action exercée par la Terre	† P	-			

BEP Sectour 3 Mathématiques - Sciences Physiques

Session 2010 Page: 10/11

Annexe 4 à rendre avec la copie

Exercice 6, question 6.1.

Compléter la seconde colonne du tableau en indiquant le numéro (N°) du mouvement correspondant à chaque trajectoire.

Choisir parmi les propositions suivantes :

- ✓ N°1 : mouvement du centre de gravité de la boule par rapport au référentiel lié à la Terre.
- ☞ N°3 : mouvement d'un point de la surface de la boule par rapport au référentiel lié à la Terre.
- ™ N°4 : mouvement d'un point de la surface de la boule par rapport au référentiel lié à la boule.

TRAJECTOIRE	MOUVEMENT
5	
,	
•	

BEP Secteur 3 Mathématiques - Sciences Physiques

Session 2010

Page:

11/11

FORMULAURE DE MATHÉMATIQUES- BEP DES SECTEURS INDUSTRIELS

Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$
;

$$(a-b)^2 = a^2 - 2ab + b^2;$$

$$(a+b)(a-b) = a^2 - b^2$$

<u>Puissances d'un nombre</u>

$$(ab)^m = a^m b^m \; ; \; a^{m+n} = a^m \times a^n \; ; \; (a^m)^n = a^{mn}$$

Racines carrées

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
; $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1) r$

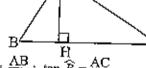
Suites géométriques

Terme de rang $1:u_1$ et raison q

Terme de rang $n: u_n = u_1, q^{n+1}$

Statistiques |

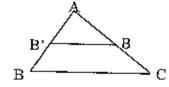
Effectif total
$$N = n_1 + n_2 + \cdots + n_p$$


Moyenne
$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$

$$\sigma^{2} = \frac{n_{1} (x_{1} - \overline{x})^{2} + n_{2} (x_{2} - \overline{x})^{2} + \dots + n_{n} (x_{n} - \overline{x})^{2}}{N}$$

$$\sigma^{2} = \frac{n_{1}x_{1}^{2} + n_{2}x_{2}^{2} + \dots + n_{p}x_{p}^{2}}{N} - \overline{x}^{2}$$

Relations métriques dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

AH . BC = AB . AC

$$\sin \widehat{B} = \frac{AC}{BC}; \cos \widehat{B} = \frac{AB}{BC}; \tan \widehat{B} = \frac{AC}{AB}$$

Énoncé de Thalès (relatif au triangle)

Si (BC) // (B'C')
$$alors \frac{AB}{AB'} = \frac{AC}{AC'}$$

Aires dans le plan

Triangle:
$$\frac{1}{2}Bh$$
.

Parallélogramme : B h.

Trapèze :
$$\frac{1}{2}(B+b)h$$
.

Disque : πR^2 .

Secteur circulaire angle lpha en degré :

$$\frac{\alpha}{360} \pi R^2$$

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit

d'aire de base B et de hauteur h:

Volume: B h.

Sphère de rayon R;

Aire: $4 \pi R^2$

Volume: $\frac{4}{3}\pi R^3$,

Cône de révolution ou Pyramide

d'aire de base B ci de hauteur h

Volume: $\frac{1}{2}Bh$.

Position relative de deux droites

Les droites d'équations y = ax + b et $y = a^{3}x + b^{3}$ sont:

- parallèles si et seulement si a = a

- orthogonales si et sculement si a a' = -1

$$\frac{\text{Calcul vectoriel dans le plan}}{|v|} \frac{|x|}{|v|} |x|, |v| + |v| |x+x| |x$$

$$\|\overrightarrow{v}\| = \sqrt{x^2 + v^2}$$

Trigonométrie

$$\cos^2 x + \sin^2 x = 1$$

$$\tan x = \frac{\sin x}{\cos x}$$

Résolution de triangle quelconque

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
R: rayon du cerele circonscrit
$$a^2 = b^2 + c^2 - 2bc \cos A$$